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The RICIS Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and Information Systems (RICIS} in 1986 to encourage the NASA
Johnson Space Center {JSC} and local industry to actively support research

in the compUt|ng and Irdbrrnation sciences. As part oT i_ndeavor, UHCL
proposed a partnership with JSC to Jointly define and manage an integrated

program of research in advanced data proces sing tecq-mology needed for JSC's
main missions, including administrative, engineering and science responsi-

bilities. JSC agreed and entered into a continuing cooperative agreement
with UHCL beginning in May 1986, to Jointly plan and execute such research

through RICIS. Additionally, under Cooperative Agreement NCC 9-16,
computing and educational facilities are shared by the two institutions to
conduct the research.

The UttCL/RICIS mission is to conduct, coordinate, and disseminate research

and professional level education in computing and information systems to
serve the needs of the government, industry, community and academia.

RICIS combines resources of UHCL and its gateway affiliates to research and

develop materials, prototypes and publications on topics of mutual interest
to its sponsors and researchers. Within UHCL, the mission is being

implemented through interdlscipIinaty involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-

tion, Human Sciences and Humanities, and Natural and Applied Sciences.

RICIS also collaborates with industryin a companion program. This program
is focused on serving the research and advanced development needs of

industry.

Moreover, UHCL established relationships with other universities and re-

search organizations, having common research interests, to provide addi-
tional sources of expertise to conduct needed research. For example, UHCL

has entered into a special partnership with Texas A&M University to help
oversee RICIS research an'l education programs, while other research

organizations are involved via the "gateway" concept.

A major role of RICIS then is to find the best match of sponsors, researchers

and research objectives to advance knowledge in the computing and informa-
tion sciences. RICIS, working Jointly with its sponsors, advises on research

needs, recommends principals for conducting the research, provides tech-

nical and administrative support to coordinate the research and integrates
technical results into the goals of UHCL, NASA/JSC and industry.

I

=

l

_J
m

d

d

i

Jl

J



RICIS Preface

w

w

This research was conducted under auspices of the Research Institute for

Computing aM Information Systems by Jon Beck of West Virginia University. Dr.
E. T. Dickerson served as RICIS research coordinator.

FuMing was provided by the NASA Technology Utilization Program, NASA

Headquarters, Code C, through Cooperative Agreement NCC 9-16 between the

NASA Johnson Space Center and the University of Houston-Clear Lake. The NASA
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1 Introduction

1.1 Statement of the Problem

Interface slicing is a new tool which has been developed to facilitate reuse-based software
engineering, by addressing the following problems, needs and issues.

1.1.1 Size of Systems Incorporating Reused Modules
The reuse of tested, robust artifacts from previous software development efforts can result

in savings in the current development effort due to the time saved both from the creative

effort proper and also from the reduced maintenance needed for the reuse of proven,

tested components [9]. There is a problem with reusing some artifacts. Typically any

particular software system will require only a subset Of the functionality of a given

repository component. This is especially likely to be true in three cases. The first is the

case of a component written to be a general component in a non-domain-specific reposito-

ry. Such a component which was written for reuse will contain all possible anticipated

functionality, the better to accommodate all possible anticipated applications. The second

case in which only a subset of a component would typically be desired is that of a compo-

nent in a domain-specific repository which was originally written for a specific system.

Such a component will typically have custom functionalities tailored for its original target

system which will not be needed when it is used in a new application. The third case is

that of a component which has been used and reused many times, each time having a bit

more functionality added to it. This is exemplified by the creeping featurism of Unix

programs. Long-lived components can accrete numerous operations and functionality over
their lifetimes, in what is called the kitchen sink syndrome. ........

In most software development environments, when a reusable module is incorporated into

a software system under development, the entire module is imported into the software

system. This includes all visible and hidden variables, subprograms, and types. This is

easily demonstrated by a megabyte-sized _rIello, world" Ada program. Standard size

optimizers and dead-code detectors cannot address this size problem because modules are
separately compiled without any knowledge of_ow the module will be used. Only at

system composition time is there sufficient knowledge to determine what part of an

imported module is needed, and what part is useless in this specific system.

1.1.2 Knowledee Reauirement_ for Proeram Modification

If a reusable module provides desired functionality in a current development effort, but

results_ av_ large _ due to-unused extra functionality,then a solutionis to

remove the unnecessary functionalityand retain only that which is desired. However,

_removing the unnecessary functionality"means modifying a module, an act which opens

a Pandora's bax of difficulties.Modifying a module requires extensive knowledge about

the module. According to Kozaczynski, et al.[17],program modification isa knowledge-

intensiveactivity,far more than simple editing. When maintainers modify a program, it

isinm_cient for them to narrowly understand only the syntax and semantics of the code;

rather,the maintainer must gain an general understanding of itsfunctionalitym what it

is supposed to do -- beforemaintenance can commence. The effortinvolved in under-
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standing a reusable module sufficiently wellto modify it nullifies much of the savings

attributable to its reuse in the first place. Another portion of the savings of reuse is

consumed in the necessity of retesting the modified module. The danger of introducing

new bugs into code as a result of modification is famous in the software engineering

community to the point of anecdote. Furthermore, modifying a component for the purpose

of compositional reuse runs counter to the concept of verbatim reuse. This concept

discourages modifications to distributed copies of repository components with the atten-

dant difficulties of maintenance and consistency, and instead calls for modifications to be

made only to the base repository component for perfective or corrective reasons.

Interface slicing does not address the entire problem of software modification. Rather, it

is narrowly focused on providing the ability to modify a reusable module by removing

unnecessary functionality without the attendant necessity of having extensive knowledge

of the module before the modification takes place and without having to extensively test
the module after the modification has taken place. This action does not violate verbatim

reuse, because the modification is an automatic transformation at the time of system

composition, in the same spirit as compilation, and does not alter the logical design or

structure of the reused component.

1.1.3 Program Understandin_ for Reverse En_dneerin_

Many modifications do not fall into the above category. There are times when it is

necessary to thoroughly understand an existing module so that its manual modification

can be undertaken. The discoveryor recovery of that knowledge fallswithin the scope of

reverse engineering. While many toolsand techniques existfor the acquisitionof

knowledge about existing systems, there are gaps in the capabilitiesor eflicienciesof

those toolsand techniques. In particular,there isan unexploited strategy which reduces

the amount of knowledge needed for modificationof a module by reducing itssize and

complexity, as opposed to the conventional strategy of employing a more powerful toolto

gain more knowledge about the module. This new strategy entailsthe need for a toolor

technique which reduces the burden of module comprehension for modificationby

reducing the sizeand complexity of the module to be modified.

There are situationsin which itisnot possibleto reduce the sizeor complexity of a

module, but in which there isstilla necessity for discoveringknowledge about the

module. Again, there are existing techniques for this, but their coverage is not perfect for

allsituations.Therefore, there is a general need for a toolwhich aids in the acquisitionof

certain types of knowledge about an existing module, distinct from the technique which
reduces the module size.

1.1.4Module Granularity and Domain Management

The DoD Software Reuse Vision and Strategy defines the concept of centrallymanaged

reuse within a domain [II]. According to thisplan, reuse-based software engineering isto

be administered from a domain management officewhich willperform the domain

engineering tasks of domain analysis,arc._tecturedevelopment, and the creation and

recovery ofreusable components. In addition to other tasks,the domain manager will

assistapplicationengineers by disseminating modified versions of repositorycomponents

for the maintenance of systems which were developed from the domain model using

repositorycomponents. When maintenance isperformed on a repositorycomponent by a

-2-



domain engineer, the domain manager is responsible for updating clients of that compo-
nent [21].

In a reuse +_Si+to_:e++n_ro_ent,+t:here _e C+onf]icting+be_fi+tS :an+d=_awbac-ks cJue to::

component size or granularity. On one hand, there are specific benefits from fine

component granularity. A system created by composition of reusable components can be

viewed as a pyramid of components [24] in which the lower levels consist of small, non-

domain-specifiC _mp0nen_w-hicfi are easily _derstood:_Lnd which con_ little design or

architectural knowledge relating to the complete system. These small components are

easiest for the application engineer to reuse; reuse at this level results in a large number

of components being reused. Also, since these small components are relatively non-

domain-specific, each component is applicable to many domains, resulting in more

efficient creation and recovery of reusable components for the domain manager and
engineer. If the repository mechanisms include some facility for localizing the retesting

and revalidation of modified components, then the domain manager's post-modification

task of client upda_ is easier if the modification is to a small component rather than to a
large component. This is meant in the sense that if some functionality x is supplied to

clients, and x is modified, then fewer clients are affected by the change ifx is contained in

a small component than if it is contained in a large component.

On the other hand, a very strong benefit of coarse component granu.Tarity is a greater
payoff for the reuse of each component, as more domain and design knowledge is captured

in a large component than in a small, resulting in a smaller input of application knowl-

edge by the application engineer.

These conflictingbenefitsof fineand coarse component granularity indicate a need for a

toolwhich can balance the two and provide the benefitsofboth in a singlereuse reposito-

ry scenario.

1.1.5_e and Space Complexity of Conventional Slicing

A finalarea which callsfor the servicesof a new toolis that ofconventional program

slic_g [25]. As evidenced by th+e _nt_m_st_c0nventio_pm_gram slicinglbr

many applications(e.g.,[2,5,13]),slicingisa worthwhile technology. Unfortunately,

conventional program slicingcan be an expensive operation,varying in time complexity

from O(n 2)to O(nS),depending upon the slicingtechnique employed, where n isthe

number of program statements, expressions,or quadruples. Dependence graph represen-

tationsof programs, employed by many conventional slicingtechniques, can occupy

several times as much space as occupied by more traditionalrepresentation forms,

especiallywhen interprocedural data and controlflow isincluded in the representation.

Because of this,itmay be difficultto apply conventional program slicingto large,real

systems [22]. Interfaceslicing,however, can be performed in at most two passes over the

source code, giving a time requirement of O(n), where n is the number of p_

elements. A pieceof code which istoo large or complex forconventional program slicing

may be sufficientlyreduced in sizeby a preliminary pass of an _rfac# s_cer to enable

subsequent conventional slicing.In such a case, a wedding of the two slicingtechnologies

would produce tangiblebenefits. Even when conventional slicingis possible,however, it

may not be necessary. Conventional slicingisat the levelof statements and expressions,

which is a very detailedlevel.In programs composed of very many small subprograms,
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slicing at the subprogram level may yield slices small enough for immediate comprehen-

sion, obviating the need for a more detailed, difficult and expensive slicing at the state-
ment level.

1.2 Statement of the Solution

This paper is based on the thesis that interface slicing is a way to approach all of the

problems, needs, and concerns listed above with a single technique. Specifically, we
assert that:

Interface slicing theory exists and has a mathematical basis which can be demon-

strated. Certain structures of existing programs can be represented as interface

slices. There is a mapping between the manipulations of the mathematical

representation of interface slices and the semantics of the program structures

being represented, such that inferences made or conclusions reached based on the

mathematical representation imply corresponding inferences or conclusions in

program semantics.

Interfaceslicingshares a common intuitiveand philosophicalbackground with

conventional slicing.

Interfaceslicingdiffers from conventional slicingboth mathematically and proce-

durally.

The problems in language theory and soRware engineering for which conventional

and interfaceslicingare appropriate intersectbut neither isa subset of the other.

The specificcontribution which thispaper makes isthe definitionof a new form of static

program analysis calledinterfaceslicing.

2 Definitions and Representation Issues

2.1 Terminology and Definitions

In this paper, we will employ the following conventions unless we explicitly note other-

wise. A subprogram is a unit of code; the term is intended to denote regular procedures

and functions,including _main j programs, and where appropriate,more exoticcode units

such as Ada tasks. If the language under discussion permits, a subprogram may be

specification, body, or both. If subprogram A contains subprogram B nested within it, a

reference to A will in general m)t include any reference to B unless B is explicitly

referenced. A package is a collection of subprograms and implies at least the possibility of

separate compilation, with allowances made for language systems which do not have the

capacity of separate compilation. Package includes the Ada notion of package but is not
limited to Ada, as it also may be used to mean a set of units in a standard object library.

Module is used as a general term to include both subprogram and package as described

above, when specifying either would be too restrictive. Component specifically refers to a

module potentially residing in a reuse repository. A component is thus a code asset of a

repository, either before or after it has been reused by incorporation into a soRware

-4-



system. We use the term element to mean a named programmatic entity. Types,

structures, variables, subprograms, tasks, and exceptions are all included in this term,

but statements, even labeled statements, are specifically excluded.

We describe certain characteristics of a program element by using the terms visible,

hidden, unprotected, and protected. A program element is visible if it is visible and

available at least for examination by non-privileged portions of the software system. We
use the term hidden to refer to a program element which is not visible outside the scope

of its module. An element is unprotected if there is no language mechanism applied to it

which prevents non-privileged accessto its internal structure, while an element is
protected if some form of language-based mechanism, not including simple scope, is used

to limit access to its internal structure by non-privileged portions of the system. Thus,

visible and hidden refer to access to the element's name, while unprotected and protected

refer to an element's internal structure. For example, from the standpoint of a main

Pascal program, a local variable within a subprogram is visible and unprotected, as only

the scoping conventions of the language make the variable inaccessible to the main

program. As another example, the variable MyVariable declared on line 3 of the Ada

package specification shown in Figure 1 is visible and protected. It is visible because it is
available by name to any part of the system which withs this package, and protected

because its internal structure is not available outside the package. Finally, type MyType2

on line 6 is hidden and protected, as neither its name nor its structure are visible outside

the package. The reason for making a point of using this terminology is twofold. First,

these concepts are language-independent, even though they have been implemented to
various extents in different languages. However, as the implementations are generally

not pure, we do not wish to use terms of a specific language, in order to avoid the implica-
tion that we are referring to a specific language's implementation of one of these concepts.

Second, in discussing the mechanisms of interface slicing, there are important consid-

erations based upon a program element's visibility and l_rot_i_on $_tatus before _d after

the slicing transformation. Since these considerations are language-independent, it is

important that colorations from existing language implementations not creep into the
discussion.

2_ General Theoretic Concepts

2.2.1 Sets and Graphs
For subset 1 notation, we use A _ B to indi-

cate that set A is a subset of, and possibly
the same as, set B, and A c B to indicate

that A is a proper subset of B so that A_.

The cardinality of A is denoted by JA [. A
graph 2 is a pair (N,A) where N is a finite

nonempty set of nodes or vertices, and

A _ NxN is a set of directed edges or arcs

1 package MyPackage is

2 type MyTypel is private;

3 MyVariable: MyTypel;
...

5 private

6 type MyType2 is ...;
...

8 end MyPackage;

Figure 1 Example for visibility and pro-
tection

1

2

Unless specified otherwise, all sets herein are finite.

Unless specified otherwise, all graphs herein are directed graphs.
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between nodes. The edge denobed (x,y) or x-_y leaves the tail 0r source node x and enters

the head or target node y, making x a predecessor of y, and y a successor ofx. The number

of predecessors of a node is its in-degree, and the number of successors is its out-degree.

Since the edges are members of a set, a graph may have at most one edge from a given

node x to another node y. A structure which allows multiple edges from one node to

another is a multigraph. In other words, a graph consists of a set of nodes and a set of

edges, while a multigraph consists of a set of nodes and a bag of edges. A path from x 1 to

xk is a sequence of length k of vertices (xt, x_ .... x k) with xieN, 1 _<i < k-1 such that each
pair xi---_Xi+leA. Two graphs G t and G 2 are isomorphic, denoted G t = G 2 iff there exists a

one-to-one correspondence between their sets of nodes and a one-to-one correspondence

between the sets of edges such that the corresponding edges also agree on the correspond-

ing source and target nodes.

2.2.2 Partial Orderings and Lattices

A reflexive, antisymmetric, transitive relation on a set S is a partial order/ng, denoted by

_-. The pair (S,=) is a partially ordered set, or poset. For a given poset (S,=), = denotes

the reflexive reduction where = = = - {(x,x)]xeS}. Given a poset (S,_-) with a,b e S, then a

join or least upper bound of a and b is an element c:

ceS ] agc A bgc A -,qx(xeS A agx=c A bgxcc)

Similarly, a meet or greatest lower bound of a and b is an element c such that:

ceS I c=a A c=b A -3x(xeS h c=x=a A c=x=b)

If a and b have a unique join, it is denoted a u b; a unique meet, a n b. A set of pairwise

incomparable elements of a poset is called a cocha/n.

A/att/ce L is a poset, every pair of elements of which have a unique join and meet; the

lattice is denoted by the triple L = (S,u,n). An element a of a lattice L is a m/n/ma/
element if there does not exist an element b of L such that b = a. A minimal element a is

also a least element if a _ b for every b in L. If L has a least element, it is unique.

Similarly, a is a max/real element if there does not exist a b in L such that a c b, and a

unique maximal element a is a greatest element if b = a for every b in L. Each element of
the poset is said to be contained in a node of the lattice. Sometimes the node and the

element it contains are used interchangeably.

The power set of a set S, denoted 28, is the set of all subsets of S, i.e., 2 8 = {T [ T G S}. A

particular lattice structure of interest in this paper is the following. Given a finite set S
and the usual set union and intersection operations denoted by tJ and [7, the poset (28,_)

is the basis for the lattice (2S,U_). Each node of this lattice contains a unique subset of
the elements of 28. We will often refer to this structure as a subset inclusion lattice s.

This lattice is of interest here because if S is the set of all statements of a program then
28 is the set of all subsets of the program statements. Since a slice is a subset of program

3 (2S,U,N) is also known as a Boolean algebra, and is characterized by being a lattice

with distributivity, existence of greatest and least elements, and complements.

-6-
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statements, then every slice corresponds to an element of 2s, and thus to a node in the

lattice (2S,u,n). This lattice is therefore a convenient structure for discussing slices of a

program and their relationships.

This lattice may be depicted using a Hasse diagram as a

graph in which the greatest element, the set S, is a node

of in-degree 0, and the least element, O, is a node of out-

degree 0. An edge a_b is drawn in the diagram iff b _ a
and there does not exist a node c such that b _ c _ a. In

this case, a is considered the parent of b, and b the child

of a. Notice that this excludes the possibility that two

separate nodes in the lattice contain the same element.

For example, given the set S = {1,2,3}, the lattice

L = is shown in Figure 2.

Given a poset (AI-), the relation _- defines a set of or-

dered pairs of elements of A. Given a set B _ A, then

some of the ordered pairs of = may also be ordered pairs
of elements of B. The set of those elements of _- which

consist of ordered pairs of elements of B is called the

123

2 13 23

2><2><;
! 2 3

0

Figure 2 Power set lattice

for {1,2,3}

restriction of= to B, and is a partial ordering of B. If the poset (A,=) is a lattice, the new

poset (B,r) is not necessarily a lattice. However, if B includes at least the $reatest and
least elements of A, then B must also be a lattice. For example, let A be 2 _ as in the

example above, so that the poset (A,_) is shown in Figure 2, and let B = {{1,2},{2,3}}. Then

(B,_) is a poset, but is not a lattice. However, if we consider B" as B augmented with the

greatest and least elements of A, so that B' = {O,{12},{2,3},{12,3}}, then (B',G) is a lattice.

2.2.3Dependences

According to Podgurski and Clarke [19],dependences 4 are

relationshipsamong program statements and are of two

types,controland data flow (or simply data) dependences.

In a program, two types of situations create dependences
between two statements, or between a statement and a

predicate. In Figure 3, a control dependence exists between

the predicate A on line 2 and the statement B of line 3; the

execution of B is control-dependent on the value of A be-

cause the value of A immediately controls the execution of B.

1 begin
2 if A then

3 B;

4 end if;

5 end;

Figure 3 Control depen-
dence

In Figure 4, the assignment statement on line 3 is data

dependent on the -m_'_mment statement on line 2, because

the correctness of Cs value in line 3 depends upon the prior
execution of the statement on line 2. Thus a data depen-
dence exists between two statements when a variable in one

may have an incorrect value if the order of execution of the

two statements is reversed. Another way of stating this is

1 begin

2 C := f(D);

3 E := C;

4 end;

Figure 4 Data dependence
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4 Some authors use dependency, singular,and dependenc/es, plural.
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that one statement is data dependent upon another if data can potentially flow from the

latter to the former in a sequence of assignment statements.

2.3 Issues of Program Representation

In one strict view, only a set of machine instructions in a computer's memory can be

termed a "computer program". But this strict interpretation is usually relaxed so that

various program representations are spoken of as being, or being equivalent to, computer
programs. Common program representation schemes include high-level source code,

pseudocode, and flow charts; the purpose of these various representation forms depends

upon the context and may include human readability, annotation for verifiability, and

transformation for application to a different platform such as a parallel multiprocessor.

In the context of program slicing, program representations are used to facilitate the auto-

mation of slicing. For a very simple program, a slice can be prepared by hand. But with
increasing size and complexity of the program, there is increasing need to employ the

assistance of automation. Current automated slicing techniques require that information

gleaned from a source code form of the program to be sliced be transformed into some

different program representation during the slicing process. Various program representa-

tion schemes have resulted from the search for ever more complete and efficient slicing

techniques. In the discussions of program representations which follow, it is important to

remember that there is no single correct way of building, say, a dependence graph

program representation, nor is there a single exact set of information which must be
available to enable slicing.

A program which is to be modeled with one of these representations is written in some

language. While this discussion concentrates on executable languages, we do not wish to

exclude the possibility of including non-executable forms such as pseudocode or formal

specifications. Each language has its own peculiarities which affect the way it can be

represented, and the form of the representation. In the explanations of the different

representation mechanisms below, it is useful to keep in mind the differences in languag-

es. For example, C has a switch statement structure which allows multiple exits, but C

has no nested subprograms; Pascal has a regular, partitioning, single-exit case statement,

but also has nested subprograms; FORTRAN has an equivalence statement parameter

passing mechanism which allows variable aliasing by array overlap; Ada has various

synchronization mechanisms for tasking. There probably is no perfect universal program

representation scheme because each of these language features may call for a somewhat

different representation mechanism. Conversely, a program representation may well
serve to bridge the gap between disparate languages.

Itiscommon to represent programs as graphs and latticespictoriallywith closedshapes

standing for nodes and directed linesrepresenting edges. For simplicity,in fact,the

pictureis oRen spoken of as _veing_ the graph or lattice,or the graph as q_eing" the

program, but itisimportant to keep in mind that the pictureor graph drawing isonly a

representation of an abstractmathematical or programmatic entity. The model may be

imbued with a set at" desired semantics, with the nodes and arcs drawn in various shapes

and given various labels, provided that there is an unambiguous and consistent mapping

between the semantics and the model such that the mathematical or syntactic integrity of

the model is maintained. In this case, results derived from mathematical proofs and

manipulations on the model give strong credence to the corresponding semantics.

-8-
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3 Interface Slicing

3.1 Introduction

To date, several major forms of program slicing have been developed.

major forms and some common techniques of performing them are:

Listed briefly, the

Static Slicing

• Incremental flow analysis [25]

• Dependence graph reachability [15]

Information-flow relation equations [8]

Dynamic Slicing
• Incremental flow analysis [16]

Dependence graph reachability [3]

These forms will be referred to collectively in t_s paper as conventional slicing, in

contrast to the new form of slicing which is presented here. In this paper, s we present

and develop an entirely new form of program slicing, interface slicing. This form of slicing

is also discussed by Beck and Eichmann [6,7,12].

Intuitively, an interface slice may be viewed as a subset of the behavior of a module,

similarly to the original notion of the conventional static slice. However, while a conven-

tional slice seeks to isolate the behavior of a specified set of program variables, even
across module boundaries, an interface slice seeks to isolate specified functionalities which

a given module exports to its containing software system.

The purpose forwhich interfaceslicingwas developed isvery differentfrom that for which

conventional slicingwas developed. While conventional slicingwas originallydesigned

primarily fordebugging and comprehension, interfaceslicingwas primarily investigated

as a toolforuse in a reuse repositoryen_nment to I) enhance the reusabilityofcompo-

nents in the repositoryand 2) improve the qualityof the system which resultsfrom a

software development-with-reuse effort_But just as the roleofconventional slicinghas

expanded toembrace many areasofboth forwardand reversesoftwareengineering,so we
see a broad applicability of interface slicing to software engineering efforts in general,

including all phases of new system development, as well as comprehension, maintenance,

redocumentation, and reenginsering of legacy systems.

3.2 A Simple Example
We present here a simple example designed to give the flavor of interface slicing. The

example illustrates one application of interface slicing, in which it is used to project a

subset of an Ada package's functionality.

Consider a simple abstract data type (ADT) implemented as an Ada package which

exports the operations necessary to implement a boolean toggle and which maintains the

= ,

5 Much ofthematerialin thissectionappeared in a condensed form in [7].
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Consider a simple abstract data
1type (ADT) implemented as an

Ada package which exports the 2
3

operations necessary to imple- 4
ment a boolean toggle and which 5

maintains the state of the toggle. 6
An example of such an ADT is 7

given in Figure 5. This package 8

exports the operations on, off, set, 9

and reset. On and off are query 10

operations which examine the 11

state of the toggle, while set and 12

reset are operations which modify 13
the state of the toggle. The actu- 14

al state of the toggle is main- 15
16

tained in the hidden variable 17
value. Suppose that a program 18
under development needs the 19

functionality that this toggle ADT 2 0
provides. In a standard software 21

development scenario in which 2 2

this package is available in the 2 3

repository, the specification of the 2 4

package in lines 1 - 6 would be 2 5

available for inspection. After
being selectedfi,om the repository Figure 5

as the appropriate component,

package togglel is
function on return boolean;

function off return boolean;

procedure set;

procedure reset;
end togglel;

package body togglel is
value: boolean := false;

function on return boolean

begin

return value = true;

end on;
function off return boolean

begin

return value = false;

end off;

procedure set is

begin

value := true;

end set;

procedure reset is

begin
value := false;

end reset;

end togglel;

is

is

A boolean togglepackage

the package would be incorporated into the software system. Toggle1 would be withed in

the appropriate scope of the system under development which needed the toggle function-

ality, and the system would then have all the functionality, all four operations, of the

toggle package available to it.

However, suppose that in the course of developing a system we find that we need, not all,
but only some of the functionality of the togg/el package. For this example, suppose that

we have need of only the on, set, and reset operations, but do not need the off operation.

In a standard development scenario, we have two options, neither of which is ideal. The

first option is to incorporate the complete toggle package/n toto, exactly as described

above. The disadvantage of this option is that in the finished software system, the off
function becomes _dead _ code in the sense that it is never called or executed. This is the

kitchen sink syndrome which characterizes development in languages such as Ada. The

system is larger than necessary in beth source and executable forms, taking extra time
and space to compile and link. Furthermore, the dead code remains for the life of the

system (which may span decades), constantly serving as a source of extra time and

confusion for the software engineer charged with maintaining the system. The confusion

caused by dead code is due to the natural tendency to assume that each line of cede in a
system actually does something. This assumption is violated by dead code.

- 10-
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Alternatively, the second option is to manually edit the source code of toggle1 and delete

the off operation from the body and specification of the package. The disadvantage of this

option is that the editing operation requires full code comprehension of the toggle1

package and involves the very real danger of introducing logical bugs into the package
due to hidden linkages and dependences and introducing syntactic bugs due to typing or

editing errors. In addition, stating the option of manually editing the source code

assumes that the developer has access to the source code. This is not necessarily the case,

especially in the context of a reuse repository which contains proprietary software which

has been licensed for (re)use, but not for copying, reverse engineering, or modification. It

is easy to propose a repository structure which gives full source code access to an auto-
mated interface slice tool, while restricti_ng human access to just the specification, thus

preserving the integrity of proprietary soRware rights.

Interface slicing provides a third alternative which does not have the disadvantages of the

two options above. We wish to use a subset of the behavior of, or a subset of the function-

ality provided by, a component. All of the functionality exported by an encapsulated
module is, by definition, described in the interface of that module, but we are interested in

a subset of that functionality. In the case of an Ada package, the interface is the package

specification. In effect, we wish to remove, i.e. slice away, th e un:ueeded functionality, as
in manual editing of the source code, but without the attendant problems of editing. By

examining only the specification of the module we know that the module contains some

functionality that we want in our system which is under development, but we also know
that it contains more functionality than we want.

We thus invoke the notion of an inter-

face slicing tool which takes as input 1)

a complete module consisting of beth

an interface specification and a code

body, and 2) a list which enumerates

the subset of the module functionality
which we desire. This list is the inter-

face slicing criterion.

Definition1 InterfaceSlicingCriteri-

on. A possiblyempty listof module

elements which the module makes

visibleand availableat leastfor refer-

ence to the surrounding system. []

The toolproduces as output a slice,a

new module which isa subset of the

original,but which contains alland

only the code necessary to support the

functionality specified in the slicing

criterion of desired operations. In the
example above, we desired the func-

package togglel is
function on return boolean;

procedure set;

procedure reset;
end togglel;

package body togglel is
value: boolean := false;

function on return boolean

begin

return value = true;.

end on;

procedure set is

begin
value := true;

end set;

procedure reset is

begin
value := false;

end reset;

end togglel;

is

Figure 6 togg/elslicedon (on,set,reset)

tionality of the operations on, Set, and reset in the toggle1 package, but not that of off. A

slice of toggle1 on the slicing criterion (on, set, reset) is shown in Figure 6. Note that in
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this simplest example, the slice consists merely of the original package without the un-

wanted function or its specification, just as would have been produced by manually

deleting the off procedure from the package specification and body. This simple example

does not have any linkages or dependences among its operations; we will now discuss a
case which does.

As a second example, consider

the slightly more sophisticated

boolean toggle which is imple-

mented by the package shown in

Figure 7. In addition to the oper-

ations of toggle1, this package

also exports the operation swap
which reverses the current value

of the toggle. Suppose that we

wish to include in our software

system just the functionalitiesof

the operations on and swap,

corresponding to a slicingcriteri-

on of (on,swap). In this situ-

ation,a naive editingof the tog-

g/e2 package to remove off,set,

and resetwillno longer suffice,

because swap has dependences on

on, set,and reset.In order to in-

clude on and swap, we must also

include set and reset. The result

of interface slicing togg/e2 on

(on,swap) isshown in Figure 8.

Note that while set and resetno

longer appear in the interface,

they do appear in the body of the

sliced package.

It is important to realize that the

specific dependences among

swap, on, set, and reset in this ex.

ample arise due to the specific

code implementation of the pack-

1 package toggle2 is
2 function on return boolean;

3 function off return boolean;

4 procedure set;

5 procedure reset;

6 procedure swap;

7 end toggle2;

8 package body toggle2 is

9 value: boolean := false;
i0 function on return boolean

II begin

12 return value = true;

13 end on;
14 function off return boolean

15 begin
16 return value = false;

17 end off;

18 procedure set is

19 begin

20 value := true;
21 end set;

22 procedure reset is

23 begin

24 value := false;

25 end reset;

26 procedure swap is

27 begin

28 if on then reset;
29 else set;

30 end if;

31 end swap;

32 end toggle2;

is

is

Figure 7 A larger boolean toggle package

age. They are not due to the design ofthe surrounding software system, nor to the re-

quirements or specificationof the togglepackage. Itis easy to envision a toggle imple-

mentation in which swap depends upon offrather than upon on, or even one in which

swap depends upon neither. This comprehension of and knowledge about the package is

required for manual editing;interfaceslicingisdesignedin partto obviate this compre-

hension requirement. With an interfaceslicingtoolavailable,we do not have to know

anything about the internal dependences of the togglepackage, as the slicingtooldoes the
dependence analysis during itsoperation.

- 12 -
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Definition 2 Interface Slice. Given a

syntactically correct module M and an

interface slicing criterion C = (e p

e_,...,ek) , where the e i are visible ele-
ments exported by M, an interface slice

S = M(C) is a syntactically correct

module with the following properties:

M(C) can be formed by deleting
zero or more declarations or

subprograms from M;

M(C) exports a set of elements

which are syntactically and

semantically equivalent to the

elements in C, and no other
elements. []

Note that this definition only allows
elements which are visible before slic-

ing to appear in the criterion, and only
allows elements which are contained in

the criterion to remain visible after the

slicing. (See also Section 3.6, Page 16.)

3.3 An Interface Slicing Mechanism

The previous examples were based on

package toggle2 is

function on return

procedure swap;

end toggle2;

package body toggle2

end

boolean;

is

value: boolean := false;

function on return boolean

begin

return value =

end on;

procedure set is

begin

value := true;

end set;

procedure reset is

begin

value := false;

end reset;

procedure swap is

begin

if on then reset;

else set;

end if;

end swap;

toggle2;

true;

is

Figure 8 togg/e2 sliced on (on, swap)

interfaceslicingbeing used to projecta sub_t of the _ctionality expo_ by a package.
The examples illustratethe usefulness of _rface slicingbut do not __ ]_ow itcan

be accomplished. In thissection,we demonstrate a method forgenerating the interface

slicesof the previous section.

As stated above, the interface slicing tool has as input a syntactically correct module and

an interfaceslicingcriterionwhich is a listof desired visiblesubprograms, types, and

var_a_ies. This list _ supplied= _thout _owledge of the mod_e implemen_tion. _e

problem at hand for the slicer is to dete_e from a static _s=of the mod_e W_ch

portions of the module it should retain in order to support the items in the slicing

criterion, and which portions can be safely deleted. In addition, it must determine which
retained portions should reside in the specification, and which should be removed from

the specification and be retained only in the body. The solution to the problem is to

perform a teachability analysis [14], based on the slicing criterion, of a dependence graph

of the package:

3.4 The Interface Dependence Graph _ .....

In the following discussion, we make the simplifying assumption of a language without

procedure or block nesting. We make this assumption because we wish to concentrate on

the ideas of interface slicing and avoid getting bogged d0_ in laborious cases of the
different variations of nesting and scope in the various languages, none of which is new

- 13-
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and all of which is covered in the literature. For example, C++ allows a declaration to

appear anywhere a statement can, while Ada declarations must be confined to a declara-

tive part; Ada allows unlimited nesting of blocks and subprograms, while C++ does not.

Each of these variations requires different handling of scope and visibility issues, and re-

quires more language-specific treatment which is more properly treated in an implemen-

tation report. This does not, however, detract from the applicability or power of interface

slicing theory, as scope and nesting are well-understood areas of language systems.

Therefore, we assume that all variable declarations and procedure definitions are global to

the module. However, we do assume that some declarations and definitions are visible,

and others hidden. Also, we often employ Ada-centric terminology, but only out of a

desire to use consistent and familiar terminology in order to evoke a clear mental image.

The specificdependence graph required for the analysis of a package we term the

package's interfacedependence graph. The package interfacedependence graph can be

constructed with at most two passes8 over the source code of the package's specification

and body in the followingmanner. Each node of the graph corresponds to a statement

which defines:any type (includingsubtypes, subranges, generics,etc.),any globalvariable

(includingconstants and generic formal parameters), or any subprogram (including

procedures, functions,tasks,and exceptions)-- in short,any unique, named, global

program entity.7 We here make the simplifyingassumption for the purposes of discus-

sion,but without lossof generality,that there isat most one definitionper statement and

per lineof source code. Every node islabeled with the name of the defined program

element to which the node corresponds, and every node is annotated with various

information necessary for an unambiguous determination of the program element to

which the node corresponds. Depending upon the language under consideration,this

information may include the node's corresponding linenumber in the source code, the type

signature of the corresponding program element, and, in the case of nesting, scoping and

name over-ridinginformation. Since we are not consideringnesting here, we will not

attempt to keep track of the scope of definitionsin the followingexamples: every subpro-

gram isglobalto the package, and only globalvariablesand type definitionsare of
interest.

As the name implies, the edges of the interface dependence graph are dependence edges.

The edges are constructed as follows. There is an edge from node x, corresponding to

program element X, to node y, corresponding to program element Y, ifX contains a

definition- or use-reference to Y. These are static reference edges. There must also be dy-

namic reference edges: ifX contains a statement which has a pointer, there must be an

edge from X to every program element which contains a potential target of the pointer.
Self-edges, indicating direct recursion, are not necessary and are therefore excluded, but

indirect recursion is certainly possible, and will appear as a cycle in the interface de-

6 Ifthere is no nesting and alldefinitionsare placed before uses, then only a single

pass is required.

7 This does not include a renaming of an already-existing program entity. In the

case of a renaming, the slicer must keep track of the name, but not create another
node for the renamed element.
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pendencegraph. The inter-
facedependencegraph thus
combinesthe information of
a standard call graph with a
data dependencegraph for
global (global to the pack-
age)type definitions and
variables. Interface depen-
dencegraphs for the toggle1

and toggle2 packages de-
scribed above are shown in

Figure 9 (with annotations

omitted for clarity). A more
formal definition of the in-

terface dependence graph
follows.

Figure 9

toggle2

value

met reaat

value

reset

ewip

(a) togg161 (_) toggle2

Interface dependence graphs for toggle1 and

Definition 3 Interface Reference. Given a module M, containing uniquely named program

entities X and Y, there is an interface reference from X to Y ifX _ Y and either

1

2

X contains a statement or definition which references Y, or

X contains a pointer which has Y or some portion of Y as a potential target.

The interface references of X form a set denoted by ireflX_. []

Definition 4 Interface Dependence Graph. Given a module M, the interface dependence

graph for M is an annotated graph G = (N,A) where N is the set of nodes x,y,.., which

correspond to the _quely named programmatic entities X,Y,..., and A _ N x N = {(x--_y) I
Y e ireflX)}. Each node in N is annotated with the line number of the source statement in

which the name of corresponding entity is first encountered in M and sufficient name,

typemark, and scoping information to unambiguously identify the entity to which N corre-
sponds. []

In general,a package_ have some visible program elements, and some hidden ones.

Hidden pro_ elements _ not available to be used _au interface slicing criterion;

only exported elements can be in the slicing criteriom However, hidden program elements

must be included in the interface dependence graph, as the transi'tive closure of a visible

element may flow to a hidden element. _use of this, an element's visibility status is a

part of the definition of the slicing criterion, but not of the interface dependence graph.

Thus, with the exception that hidden elements may not appear in the slicing criterion list,

hidden elements are treated identically to visible ones during the interface slicing process.

The slicer, being a pre-compilation code transformation tool with privileges similar to a
compiler, has complete access to all portions of the source code, and thus is not hindered

by these language mechanisms.
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3.5 Slicing the Interface Dependence Graph

Once a package's interface dependence graph has been constructed as described above, an

interface slice based on a given slicing criterion of desired functionality can be generated

with its aid. Starting with the nodes in the graph which correspond to the named items
in the slicing criterion, generate the transitive closure of those nodes by following the

dependence edges. The interface slice consists of the definitions and subprograms which

correspond to the transitive closure, plus any needed syntactic sugar (see Section 3.10)
required for the package structure.

For instance, consider the interface slice which this process generates for the toggle1

example discussed above. That example discussed an interface slice for the togg/el

package, whose interface dependence graph is shown in Figure 9(a), based on the slicing
criterion (on, set, reset). The transitive closure of this criterion in Figure 9(a) consists of

the nodes on, set, reset, and value. This means that the slice should consist of the

subprograms on, set, and reset, and the definition of va/ue. This was the same conclusion

reached in the intuitive consideration above, as shown in Figure 6. Similarly, the transi-

tive closure of the slicing criterion (on, swap) in Figure 9(b) consists of the nodes on, set,

reset, swap, and value, corresponding to the subprograms and variable by those names in
the package toggle2. This also matches the conclusion reached above, as shown in

Figure 8.

3.6 Position of Retained Elements

ARer the program elements to be retained are identified by the dependence analysis of

the interfacedependence graph, theirfinallocationsin the slice_ the new package
must be determined. There are three rules which determine the finallocationof an

element, depending upon the visibilityof the element in the originalpackage. The rules

are:

Elements which were hidden remain hidden. This ensures that no previously

hidden elements becomes visible, a situation which would violate the information

hiding design of the original package.

2 Elements named in the slicing criterion remain visible. Recall that in order to be in
the slicing criterion in the first place, an element must be visible in the original

package. The definition of the interface slice requires that it is exactly the named

elements which the slice must export. Therefore the named elements must remain
visible in the slice.

3 Elements not in the slicing criterion which were visible become hidden. This allows

the slice to conform to one principle of good modular design, which is that only the

elements which a surrounding system uses should be exported by a module. It is

this principle which is so easily violated in standard reuse-based software develop-

ment. If our soRware system does not use toggle2's reset operation, then the

package should not export the operation. If the operation is exported, then a

future maintainer will search in vain for its use in the system, because no such use

exists. This wastes time and hampers comprehension. Instead, this rule ensures
that the reset operation becomes hidden, so that the maintainer will know with a

glance that the operation is not used elsewhere in the system.
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3.7 An Extended Example

The examples above illustrate the general concept of interface slicing, but leave out some

important details. To fill in some of these details, we will next discuss a pair of generic
Ada packages which originated in the public domain, s These packages were explicitly

written to be used as building blocks for Ada programs, similarly to the components of

Booch [10] or Uhl and Schmid [23]. The first of the packages implements the a set

abstraction in the Ada package SetPkgTemplate. The package is instantiated by supply-

ing it with two parameters, the first being the type of element which the set is to contain,

and the second being a comparison function to determine the equality of two elements of

this type. The package provides all the operations necessary to create, manipulate, query,

and destroy sets. The specification of the set package is listed in Appendix A.

SetPkgTemplate is written to use a list abstraction as the underlying structure upon
which it builds the set ADT, and so the set package requires the second of the two generic

packages discussed here, which implements the list ADT as the Ada package ListPkgTern-

plate. This happens to be a singly-linked dynamic list implementation, although nothing

in SetPkgTemplate requires this to be the case. ListPkgTemplate exports all the opera-

tions necessary to create,manipulate, query, and destroy lists.This package requires

three generic parameters. The firsttwo are similar to the generic parameters of the set

package, namely, the type of element in the listand the equality function. The third

generic parameter isa copy function which gives the listpackage the abilityto copy a list

element, to provide for one-level-deepcopying of the list.The specificationfor the list

package islistedin Appendix B.

3.8 A Single Level of Interface Slicing ........
Suppose that we wish to make use of sets and set operations in a program we are writing,

but we have need for only a few of the set operations, namely, in this example, create,

insert, and equal. In the repository we have available the source code for SetPkgTemplate;

by eY_mining its specification we see that it does provide a set type and operations for
that type, and that in order to use SetPkgTemplate, we must supply the type ElernType.

Therefore, we wish to slice SetPkgTemplate using the in_ace slicing criterion (Create,

Insert, Equal, Set, ElemType). We want to include all the code necessary to allow me to
use these three operations and two types, but would like to have only the necessary code,

and no more. In order to slice the set package, we must examine the interface depen-

dence graph for the set package, which is shown in Figure 10. The three operations

Create, Insert, and Equal, and the types Set and ElemType are defined on lines 9, 11, 21,

6, and 3, respectively, of Appendix 6.. The transitive closure of these five nodes, co,ze-

sponding to the desired slice of the set package, is shown in Figure 11.

Out of the totalof 16 subprograms, one of which is a generic parameter, on 151 linesof

code in the originalpackage, the slicecontains 8 subprograms on 84 linesof code. Thus

interfaceslicinghas reduced the number of subprograms and the number of linesof code

by a factorof 2 in thisexample. A comparison of Figure 10 vs. Figure 11 shows visually

the reduction in interfacesizeof the slicedset package (see alsoTable 1,Page 24).

These packages were extracted and modified from the ASR repositoryon SIMTEL

20 and were written by B. Altus and i_ Kownacki of Intermetrics.
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3.9 Name Overloading
In the previous section, to slice the Ada package SetPkgTemplate, we used the slicing

criterion (Create, Insert, Equal, Set, ElemType). Giving this exact slicing criterion to an

automatic slicing tool won't work, however, because the name Equal is overloaded in the

package. Referring to the package specification in Appendix A, Equal appears on line 4

with the type signature

function: ElemType x ElemType --, boolean,

while on line 21 it appears with the type signature

function: Set x Set _ boolean.

Note that the interface dependence graph in Figure 10 has two separate nodes for the two

occurrences of the overloaded name Equal (in the figure, Set and ElemType as parameter

typemarks are abbreviated as S and ET, respectively). Since Equal is overloaded, the

slicing criterion listed above is ambiguous, and needs amplification with the argument

type signature of Equal. An unambiguous slicing criterion might appear as:

(CreateO :Set, Insert(Set, Elem Type), Equal(Set, Set) :boolean, type Set, type Elern-

Type)

Henceforth we will use the shortest form which is unambiguous, e.g.:

(Create, Insert, Equal(Set, Set), Set, ElemType)

3.10 Syntactic Sugar

Up to this point in the discussion of interface slicing, none of the concepts presented have

been langnage-specific. While we are using Ada as the language of the examples, the

concepts are applicable to any language such as C++ or M:L which includes such features
as separate compilation and specifications with type signatures. But while the concepts

are language-independent, a working interface slicing tool cannot be. This is because

each language has its own structure and syntax which must be respected, else the output

of the slicer will be syntactically incorrect and therefore useless.

Figure 5 (Page 10) lists a complete Ada package, while Figure 6 (Page 11) lists a slice of

that package. Lines 1, 6, 7, and 25 of Figure 5 appear in Figure 6, even though they are

not part of the transitive closure of the interface dependence graph of togg/el upon which

the slice of Figure 6 is based. As with conventional slicers discussed in previous sections,

the interface slicer must keep track of the language syntax when generating the slice.

A slightly more difficult example of this occurs in SetPkgTemplate. IAne 38 of that

specification (in Appendix A) is:

package ListPkg is new ListPkgTemplate(ElemType, Equal);

The purpose of this line is to instantiate the generic package ListPkgTemplate by

supplying it with the identifier L/stPkg and the two parameters ElemType and Equal. As
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we have described it so far, the interface slicer is a pre-compilation text transforming tool.

As such, it does not have the information of the required typemark for the object indicated

by Equal in this context. By examining the specification of ListPkgTemplate, in Appendix

B, we can see that the proper generic parameter must be the function Equal which is

defined on line 4 of SetPkgTemplate. But the interface slicer does not know this, as it is

only considering SetPkgTemplate and does not have access to ListPkgTemplate. (We will

discuss ListPkgTemplate in the following sections.) Since the name Equal is overloaded,

the slicer doesn't know to which Equal this line refers.

The interface slicer must include line 38 of SetPkgTemplate in the slice, as this is

syntactic sugar which it has no reason to slice out. But if it includes this line, which has
the name Equal in it, the slicer must also include the definition of Equal. Since Equal

here is ambiguous, the slicer must therefore include all definitions of Equal, to be sure of

including the correct one. The two definitions of Equal occur on lines 4 and 21 of

SetPkgTemplate.

Figure 11 (Page 18) shows the results of the reachability analysis of the interface depen-

dence graph of SetPkgTernplate. By this analysis, the interface slicer will include the

definition of Equal which occurs on line 21, as indicated by the appearance of the node

Equal (Set, Set) in the graph. However, node Equal (ElemType, ElemType) corresponding

to the definition of Equal on line 4, does not appear in the graph. This is because the

interface slicing algorithm gives no reason to include that node, as nothing in the slicing

criterion depends upon Equal (ElemType, ElemType) in SetPkgTemplate. In summary,
line 21 is included in the slice because of the transitive closure of the interface depen-

dence graph, and line 4, while not included in the sliced graph, is included in the final

text of the slice because of syntactic analysis. This difficulty is due to the fact that we are

describing the slicer as though it were considering SetPkgTemplate in isolation. In fact, it

is most reasonable to consider that a production interface slicer would be implemented as

a module of an integrated development environment, with full access to the program
databases and libraries of that environment. This would considerably reduce some of the

difficulties described here. To give the flavor of this, Section 3.12 will extend consider-

ation to ListPkgTemplate proper.

3.11 Number of Generic Parameters

A procedure which instantiates SetPkgTemplate has to supply an element type and an

equality function. In the previous examples, the number of these parameters did not

change due to interface slicing. However, it is easy to produce an example in which

interface slicing eliminates all references to a generic parameter and renders it unnec-

essary. The elimination of unnecessary parameters increases the usefulness of interface

slicing in reducing size and complexity of reused packages.

Consider, for example, a procedure which instantiates SetPkgTemplate and slices it on

{Create, Insert, Intersect, Size, Set, ElemType). The interface dependence graph of the set
package sliced on this criterion is shown in Figure 12 (cf. Figure 10 on Page 18, and

Figure 11). Notice that the generic function parameter Equal (ElemType, ElemType),

node $4, does not appear in the slice. This is because none of the operations in the slicing

criterion either directly or transitively reference the equality function. This means that
based strictly on a consideration of SetPkgTemplate sliced with this criterion, the generic
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parameter Equal is unnecessary and
can be omitted.

A generic parameter cannot simply be
omitted from a standard non-defaulted

Ada package instantiation, however.
For a procedure to instantiate

SetPkgTemplate, the compiler expects
a statement such as:

package SetPkg is new SetPkg-

Template (MyElementType, My-
Equal);

If the MyEqual is dropped from the
line above, the compiler will generate

Create

Insert _s

ElomTylPo _-Intorslct---* Sot

Figure 12 SetPkgTernplate sliced on (Create,

Insert, Intersect, Size, Set, ElemType>

an error message complaining about a missing generic subprogram argument. While
defaulting generic parameters will help in some situations, in other cases there is no

appropriate default and attempting to include an inappropriate default parameter merely

to enable this feature of interface slicing would lead to serious programmatic as well as
stylistic errors.

In general, given a generic package the instantiation of which originally took the form:

package APkg is new APkgTemplate (Pl .... ,Pn) ;

in which Pl ..... p, represent generic parameters, after interface slicing we wish to instan-
tiate the package with some number of parameters removed by the interface slicing
process.

One approach to reconciling mismatched parameters has been advanced by Purtilo and

Atlee [20], who have developed the module interconnection language Nimble. Nimble was

designed to automatically adapt mod_e interfaces which have large discrepancies in the

types and sizesof theirparameters; merely reconcilingtheirnumber, as required here, is

an easy job forNimble. We thereforeassume an automatic interfaceslicerwould be

implemented with some mechanism perhaps similar to Nimble forreconcilingmismatched

numbers of package parameters.

3.12 A Second Level of Slicing

While the slice in the example above represents a considerable reduction in the size of the

set package, a much greater overall_ving_ can be realized if the slicing process is

extended to the listpackage upon which the set package isbased. In addition,ifthe

language in use allows a directnamed reference to program elements in other modules, as

was the case with the ambiguous reference to Equal discussed above, then the most
precise slice of one module may require information from other modules.

Just as the main program in the example above used functionality provided by the set

package, so the set package needs to use functionality provided by the list package. But
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just as the main program above did not need all of the functionality of the set package but

only a subset, so too does the set package need only a subset of the functionality of the list

package. That subset, or slice, is based, as above, on the transitive closure of the slicing

criterion of visible program elements exported by the list package which the set package

directly references. It does not matter which program elements the original unsliced set

package references. All that matters is which program elements the set package referenc-

es after being sliced.

The interface dependence graph of ListPkgTemplate is shown in Figure 13. In this figure,

for legibility, program element names are replaced with the line numbers of the package

as listed in Appendix B. In the case of SetPkgTemplate sliced on (Create,+ Insert, Equal

(Set, Set), Set, ElemType}, the references from the new, sliced set package to the list

package consist of: List, EmptyList, Attach (ItemType, List): List, Create, DeleteItems,

FirstValue, IsEmpty, and IsInList. These appear on lines 5, 8, 31, 47, 56, 63, 66, and 69
of Appendix B, and are represented by the nodes of the same numbers in Figure 13.

These list program elements therefore exactly constitute the slicing criterion on which to

slice the list package, based on the original desire to employ the set package elements

Create, Insert, Equal(Set, Set), Set, and ElemType. The elements in ListPkgTemplate

which are referenced from SetPkgTemplate must be visible elements, appropriate for

inclusionin a slicingcriterion,lestthey could not be referenced by SetPkgTemplate in the

firstplace.

r

LZO5

L39

/
L43 ( L44 Ll17

L93

Lll

1
T.7

L27

L47

L|7

m

Figure 13 Interface dependence graph for ListPkgTemplate
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The interface dependence graph of the original ListPkgTemplate is shown in Figure 13.

This package is large and complex enough to make manual editing a decidedly non-trivial

task requiring a major comprehension effort. However, slicing it using the criterion (List,

EmptyList, Attach (ItemType, List): List, Create, DeleteItems, FirstValue, IsEmpty,
IsInList> produces the much smaller graph shown in Figure 14. In this case, in fact, not

only is the resulting list package much smaller, but it also has a less complex interface

dependence graph. There is a correspondingly large reduction in overall size and

complexity of the source code which the slicer produces not only as output for the compiler

but equally importantly for the software engineer charged with development or mainte-

nance.

I

l

i
W

m

L9

\
L56 L69 L63

LI05

L31 L47

\ / \.

--.../
L43

Figure 14 Sliced interface dependence graph of ListPkgTemplate
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Slicingneed not stop at two levels,of course,but can be continued to the maximum

number of levelsof packages in a given software system. Weide, et al.,imply that in a

mature reusable-component development environment, the number oflevelsinthe

component composition hierarchy may be quite large [24].While a comparison of

Figure 13 with Figure 14 gives an indicationof the effectof interfaceslicing,we listin

Table 1 the actual change in sizeof the interfacedependence graphs and of the source

and two examples ofexecutable code for the originaland slicedset and listpackages in

the example above. The driver program was minimal in size while still making references

to every Set entityin the slicingcriterion.We generated an executable on several

differentplatforms, and listtwo representative ones in the table:VAX Ada forVMS 5.5-2,

and Meridian Aria 4.1.3for Sun-4 Unix. The numbers in the table indicatethat slicing

reduced the sizeof the set and listcomponent source code by more than half,and reduces
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the size of a test driver program's executable by up to 45%. In other words, at least 17%,

and up to 45%, of the executable for the simple unsliced example program produced by
standard commercial compilers is dead code. While numerical results from a larger

sample size of larger programs will have to await the completion of an automatic interface

slicer implementation, based on this example of source code and dead code reduction
alone, the interface slicer can help reduce the size and complexity of systems, and thus to

ease the comprehension problems in software maintenance.

# IDG

nodes

19+39-58

# source

lines

151+393=544

executable

bytes VMS

executable

bytes Unix

Full Set+List 29+69-98 20000 49152

Sliced Set+List 11+15-26 10+22-40 84+I17-201 II000 " 40960

% Reduction 55% 59_ 63_ 45% 17%

Table 1 Size reductions in IDG and code of SetPkgTemplate and ListPkgTemplate

Because conventional slicing analyzes programs at the statement level, we term conven-

tional slicing a microanalysis technique. Current conventional slicing techniques depend

upon program dependence graph representations, the generation of which can be expen-

sive in time and space requirements. Thus there is some question about the practicality

of applying conventional slicing to very large programs. In contrast, we consider interface

slicing to be a macroanalysis technique in that it deals with programs at the package level

with no larger time or space requirements than a compiler requires, and so are appropri-

ate for application to even very large programs. Indeed, it is possible that the size

reduction of source code of a package after interface slicing will be sufficient to allow

conventional slicing to be performed on that package.

3.13 Dynamic Interface SHcing
So far, we have presented inter-

face slicing only from the per-

spective of a static analysis, but

it is possible to imagine dynam-

ic interface slicing. Consider
the system in Figure 15. A

strict static analysis, as de-
scribed so far, would conclude

that package M references both

packages A and B, and that any
system which includes M must
also include both A and B. But

if the value of the predicate X

were known, using the tech-

niques of dynamic slicing, then

it would be possible to conclude

package A is with A, B;
... package M is

procedure... F; begin

end A; ...
if X then

package B is A.F;
... else

procedure G; B.G;

... end if;

end B; end M;

that either A or B, but not both, were necessary for _clusion.

Figure 15 Example for dynamic interfaceslicing

However, given the
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applications currently envisioned for interface slicing, and the techniques currently used

to generate interface slicing as presented here, we do not foresee substantial practical use

for dynamic interface slicing. Indeed, it is not clear that many systems even contain
constructs such as shown in Figure 15, which would be amenable to dynamic interface

slicing.

4 Posets and Lattices of Slices

4.1 Decomposition Slice Poset
Gallagher and Lyle [13] use conventional static slicing as the basis of a total program

decomposition. The units of this program decomposition they term decomposition slices,

and they arrange these decomposition slices into a poset, the elements of which each

consist of a subset of the program statements. 9 Their intent is to ascertain the limits

past which a specific program modification cannot reach, enabling software maintainers to
focus on the region of the program which their change does affect, secure in the knowl-

edge that the change can have no linkages to -- and thus can introduce no bugs in

other parts of the program. Gallagher and Lyle accomplish this by using the poset of

decomposition slices to establish dependence and independence among program state-
ments.

Figure 16 shows an example decomposition slice poset.
The meaning of this figure is that the five nodes repre-

sent the decomposition slices of a program, each using

one of the program's five variables as the slicing criteri-
on. The set of statements in the slice E is wholly con-

tained in each of the other three slices; the set of state-

ments in D is wholly contained in C; D contains at least

one statement not in E. If the poset included a greatest

element (which would correspond to the original un-

decomposed program), it would be a lattice; rather, it has

a set of maximal elements and is thus a poset. Since the

poset represents a total program decomposition, the

B C

/
D

J
Figure 16 Decomposition

slice poset

union of the three maximal slices yields the original
program (i.e, every program statement is in at least one maximal slice), l° Using the

structured relationship of maximal and interior slices, Gallagher and Lyle proceed to

9

10

In the referenced paper, Gallagher and Lyle term this poset a lattice, but it is not a
lattice as presented. There is no upper bound of any pair of the maximal elements

in their struchn_, and thus the structure is not a lattice. Their conclusions about

the relationships among the elements of the poset remain valid, however.

Gallagher and Lyle fail to point out that if the poset produced by their decomposi-

tion is in fact a lattice, that is, if there is a single maximal element, then there are

no independent slices in the program. In this case, their procedure results in no

improvement for the maintenance process. A determination of how frequently this
is the case must await a real slicer.
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characterize every program statement and variable as dependent or independent. With

the statements and variables so characterized, Gallagher and Lyle give precise rules

which state the kinds of program modifications which can be performed while still
guaranteeing that the modifications have no effect outside the maximal slice where the

modifications take place. The specific rules which they present are not of interest in this

discussion. What is of interest is their concept of total program decomposition yielding a

poset arrangement of slices, the relationship of which allows specific characterizations of
program elements, and thus new conclusions about those program elements.

4.2 A Lattice Construction Algorithm

Before we discuss interface slice lattices in the next section, we first take the time here to

discuss the construction of lattices in general. Because of the paucity of published lattice

algorithms, and of the desirability to experiment with a number of lattices during the

course of this investigation, we developed a lattice construction algorithm. While it was
not our intent to necessarily develop the most efficient algorithm possible, we believe that,

for an unordered set of nodes about which no prior knowledge is available, no algorithm

can substantially improve upon this one for time requirements. In a production imple-

mentation, however, more space-efficient techniques such as those of A/t-Kaci, et al.,
which use bit-vector representations of sets and which thereby accomplish very space-

efficient lattice representations might be more appropriate [1]. Although the researchers

of that paper do not present a lattice construction algorithm, once the lattice is built using
our algorithm, their techniques could then be used for representation and manipulation

purposes. Rather, our intent was to develop an algorithm which clearly and explicitly

built the lattice structure in order to 1) aid in visualizing the relationships among the

lattice elements, 2) provide a basis for reasoning about the program semantics inferred
from those relationships, and 3) provide a vehicle for experimenting with those relation-

ships. With appropriate small modifications, the same algorithm can be used to build a

graphical representation of a poset or a semilattice as well as a lattice.

The algorithm which we developed forconstructing the latticeof interfaceslicesis listed

in Figure 17) I Recall that each latticeelement isa set of program statements, and that

each element has associatedwith ita set of parents and a set of children which are other

lattice elements. This algorithm inserts a new set into the lattice by identifying the set of

parents and the set of children which the new set willhave, and by removing parent and
child relationswhich would become transitiveancestor and descendant relationsonce the

new set is inserted. The algorithm listing here assumes that the set element type is a

code statement and that the poset partial ordering relation is subset. The algorithm

assumes an implementation in which each node's set of parents and children is available

7- .....

11 We implemented this algorithm in approximately 600 slocof ANSI C. Itis

interestingto note that an almost identicalalgorithm was implemented by Atkins

[4]in the Opal programming language of Servio Corporation's GemStone Object-

Oriented Database Management System using only 25 sloc.
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1 /* Find the proper place for NewSet in the lattice */
2

3 /* Find the set of parents for the new node */
4

5 SetOfParentsForNewSet <-- O

6 SetOfPotentialParents _-- {Univ}
7 while SetOfPotentialParents _

8 Anode (-- a node removed from SetOfPotentialParents

9 foreach Achild in Anode's set of children do

i0 if NewSet = Achild

ii return (NewSet is already in the lattice)

12 if NewSet _ Achild
13 add Achild to SetOfPotentialParents

14 if no Achild was added to SetOfPotentialParents

15 add Anode to SetOfParentsForNewSet

16

17 /* Similarly find the set of children for the new node */
18
19 SetOfChildrenForNewSet (--

20 SetOfPotentialChildren (-- {Void)
21 while SetOfPotentialChildren _ O

22 Anode (-- a node removed from SetOfPotentialChildren

23 foreach Aparent in Anode's set of parents do

24 if Aparent _ NewSet

25 add Aparent to SetOfPotentialChildren
26 if no Aparent was added to SetOfPotentialChildren
27 add Anode to SetOfChildrenForNewSet

28

29 /* Remove would-be transitive links between all nodes */

30 /* in SetOfParentsForNewSet and SetOfChildrenForNewSet */

31

32 foreach Pnode in SetOfParentsForNewSet do

33 foreach Cnode in SetOfChildrenForNewSet do
34 foreach Child in Pnode's set of children do

35 if Child = Cnode

36 remove Pnode from Cnode's set of parents
37 remove Cnode from Pnode's set of children

38
39 /* Insert the NewSet into the lattice */
4O
41 NewSet's children <-- SetOfChildrenForNewSet

42 NewSet's parents (-- SetOfParentsForNewSet

Figure 17 A lattice construction algorithm
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for inspection and modification' 12 Further, we stipulate the original existence of two

lattice nodes, a greatest node Univ which contains the set of all program statements, and

a least node Void which contains the empty set. Initially, Univ's only child is Void, and

Void's only parent is Univ. Univ's set of parents and Void's set of children are both

invariantly empty.

In the discussion of the algorithm which follows, we consider Univ to be at the "top" of the

lattice and Void to be at the "bottom," and so all directed edges in the diagrams point

downwards. We use the terms node and set synonymously to refer to a lattice element.

The algorithm mainly consists of a pair of walks of the lattice, one starting at the top and

working down (lines 3-15) and the other starting at the bottom and working up (lines 17-

27). While this algorithm cannot be implemented with a strictly depth-first search

strategy, whether the walks are strictly breadth-first or of a hybrid nature depends upon

whether the sets SetOfPotentialParents and SetOfPotentialChildren in lines 6 and 20 are

implemented as queues or stacks respectively.We willdescribe the top-down walk in

detail;the bottom-up walk isessentiallythe same with the roles ofparents and children
reversed.

The purpose of the top-down walk in the firstsectionof the algorithm isto identifythe

nodes which are to become parents of the new set to be inserted intothe lattice.The

desired resultof the walk is to identifyallnodes a such that

1 a _ NewSet, and

2 there does not exist a node c such that a _ c _ NewSet.

At the startof the walk, line6, Univ isthe only element in SetOfPotentiaIParents, a set of

nodes which always satisfies1,and forwhich 2 istrue to the extent that the algorithm

has determined so far. The walk isimplemented as a wh//e loop,lines 7-15,which contin-

ues as long as there are stillnodes in SetOfPotentiaIParents to consider. The body of the

loop consistsof removing a node from the SetOfPotentiaIParents and examining each of its

children in relationto the NewSet. Ifany of the children is the same as NewSet (lines10-

11), meaning that NewSet is already in the lattice, the algorithm terminates immediately,
as the definition of the lattice states that no two nodes are the same. However, if NewSet

is a subset of a child, that child is added to the SetOfPotentialParents, as NewSet by

definition must be a closest subset of each of its parents. At the end of each iteration of
the wh//e loop (lines 14-15), all of the children of the node have been considered. If none

of them was a closer superset of NewSet than the node itself, then the node by definition

must be a parent of NewSet, and so is added to the SetOfParentsForNewSet. This discus-

sion assumes that SetO_otea_/o_aren_ and SetOfParentsForNewSet are implemented as

sets at least in the sense that duplicate elements are excluded. Otherwise, the same

12 The setsof parents and children in the latticecontain redundant information: ifx

isa child ofy, then y isa parent ofx. Maintaining both sets makes the logicof the

algorithm much easier to follow,and makes the representation more explicit,at

the expense of the space and effortto store redundant information.
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element could appear multiple times in the SetOfParentsForNewSet, which violates the

assumption that if the edge a--->b exists in the lattice, it is unique.

In the second sectionl the bottom-up walk in lines i9-27 uses the same principles to find

the SetOfChildrenForNewSet. The only notable difference is that the test for the prior

existence of NewSet in the lattice in lines 10-11 is not repeated in the bottom-up walk, as

the top-down walk is guaranteed to have found all such duplicates in the lattice.

At the conclusion of the two walks, all necessary information for inserting the NewSet into
its proper place in _e-ia_t_ce has been obtained and is stored in the sets

SetOfParentsForNewSet and SetOfChildrenForNewSet. This insertion is performed in the

fourth section of the algorithm, lines 39-42. The third section of the algorithm, lines 29-

37, isnecessary to maintain the consistency of the latticestructure. While transitivityis

an inherent feature of the lattice(i.e.,ifa _ b _ c then a _ c),transitiverelationsare not

explicitlyrepresented in the lattice.In fact,the definitionof the latticeforbidsthe

representation of transitiverelations. IfUniv and Void are distinguished nodes whose

contents are never modified (as in thisalgorithm),then every node added to the lattice

would resultin an inconsistentset of children for every parent of the new node, and an

inconsistentset of parents for every child of the new node. To see this,consider that

every pair of elements in the lattice a _ b such that inserting node c results in a _ c _ b,

a must no longer have b as one of its children, and b can no longer have a as one of its

parents. Rather, b becomes a descendant of a, but the descendant relationship is not

explicitlyrepresented in the latticestructure. This isillustratedin Figure 18.
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Therefore,in the _d sectionof the al_Hthm, itis necessary to do _ exhaustive

pairwise comparison between every element in the SetOfParentsForNewSet and the

SetOfChildrenForNewSet. Ifany _dofa member of _e former isa member of the
latter,that p_fit-child relationshipis dissolved(lines36-37).
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4.3 Interface Slice Lattice

Interface slices by themselves are interesting and useful, but when an interface slice is

presented as a standalone artifact it is difficult to understand its relationships to other

interface slices and to the original package. Also, as presented, each interface slice must

be computed afresh from the interface dependence graph as a transitive closure graph
operation. Might there be a less expensive method of generating interface slices? In

Section 3 we specifically mentioned two slices of the generic Ada package SetPkgTemplate.

These two slices were generated by the slicing criteria (Create, Insert, Equal (Set, Set),
Set, ElemType) and (Create, Insert, Intersect, Size, Set, ElemType), and are shown in

Figure 11 (Page 18) and Figure 12 (Page 21), respectively. The two slices are patently

different. Are they related? If so, what is their relationship? Do other interface slices of

the same package exist? If so, how many are there, and what can be said about their re-

lationships to other slices and to the original program?

In an attempt to answer these questions, we will discuss the arrangement of interface

slices into a lattice built using the technique of the previous section. Since all interface

slices, like all program slices generally, consist solely of subsets of the original set of

statements, they can be arranged into a lattice based on the poset of the original program

elements and the subset operation. More formally, however, we make the following
observation.

Proposition 1 Interface Slices Form a Lattice. Given a set S of program elements of a
module and the subset relation _, and the set T _ 2 s which is the set of interface slices of

the module, then the poset (T,_) is a lattice.

Proof." By definition, the restriction of _ to T is a partial ordering. By definition, the set

of interfaceslicesof a module includes S, corresponding to the unsliced program, and _,

corresponding to the slicegenerated by the empty slicingcriterion.But those two

elements are exactly the greatest and leastelements of the lattice{2s,c_}. Therefore,

(T,_) is a lattice. []

SetPkgTemplate has 19 visibleelements. They are listedin Table 2, along with their line

number designations and theirrespective transitiveclosures. The second and third

columns of the table,taken together,constitutea bag of sets,one set per row. Each of

these setscan be considered an interfaces_ceof the package whose slicingcriterionis the

singleton _ted in the second column of the table. The sets in this table form a poset,

from which a latticecan be constructed using the algorithm described above. The

algorithm adds the empty and universe sets,thus guaranteeing that the poset is a lattice.

A Hasse diagram of the lattice(with the universe set omitted forclarity)isshown in

Figure 19. (The arrows on the _ edges _ figureare also omitted for clarity;all

of the edges point downward.) The figureshows that nodes corresponding to certain

package elements (e.g.,E/emType) appear with cardinalityI. This corresponds to the fact

that the Ada type ElemType can be exported by SetPkgTemplate alone, without any

dependence on other package elements. Other package elements do not appear as single-

tons in the graph (e.g., Intersect appears only in combination with E/ementType and Set).

This corresponds to the fact that it is not possible to manually edit SetPkgTemplate to

retain the procedure Intersect, while eliminating ElernentType and Set, and still have a

compilable package. A slice¢m the criterion(Intersect)willinclude the code defining
ElementType and Set.
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Equal (ElemType, ElemType)

Set

NoMore

SetIter

Create

Insert

Delete

Intersect

Union

Copy

Equal(Set,Set)
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Size

MakeSetIter

More

Next

Destroy

Line
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S4

86

S7

88

89

811

813

S15

817
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S30
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S36
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S3,86
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Table 2 Visible elements of SetPkgTemplate

This is not to claim that slicing SetPkgTemplate on (ElemType) necessarily produces a

useful slice. In general, the minimum functionality set for a useful ADT must include at
least one constructor function and one observer function. An interface slicer could easily

flag a slicing criterion, either manually or automatically generated, which fails to meet

minimum _mefulness" standards, or other measures oforthodoxy, indicatinglikelydesign

flaws. Figure 19 contains a number ofsliceswhich do contain at leasta constructorand

an observer, and which provide quite useful collectionsof functionalities.

Proposition 2 Smaller Subsets Do Not Exist. No non-empty interface slice can exist which

is a subset of the parents of O in the interface slice lattice.

Proof.- The construction of the slices in columns 2 and 3 of Table 2 originated with

singleton visible package elements and included only their transitive closures. Since the

transitive closure of a directed graph node is unique and the interface slice construction

algorithm is deterministic, no smaller interface slice based on singleton elements can
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ET, Set

Intersect

ET, Set, SetIter, NoMore
Set Set ET, Set A

Equal (S,S) ,More,Next Create IsEmpty Set Insert /_ ElemType

IsMember,MakeSetrter _ I Destr°YA // EquaI(ET'ET)

L"//2;?';J
S eM_I;: r I _I IT" Set 1 / // _ / /

,e_.,etIter \ _._ _ \ \ / / / / / /I / / /

MakeSetIter_,.ext \"_ \\ I I ! il / I ! I I

Setlter NoMore Bet ElemTypa

O

r =

Figure 19 Poset of singletonvisibleelements ofSetPkgTemplate (with 0 added)

exist. Since all non-singleton interface slices are equivalent to the set union of the

singleton slices, and set union is an operation of monotonically increasing cardinality, no
smaller slicecan be generated. []

Definition5 StrictIndependence. For the purposes of interfaceslicing,a module element

is strictly independent if it appears in a slice which has _ as its only child. A module

element is strictly dependent otherwise. []

In lattice terms, the only descendant of the node containing ElemType is O and so

ElemType is independent, implying in package terms that ElemType does not depend on

any other package element. The element Intersect appears only in nodes having non-O

nodes as children, implying that Intersect depends on other package elements. A general-

ization of this observation leads to the following:

Proposition 3 Nodes Without Children. If the only child of a slice lattice node A is O, that

is, A is independent, then every element which appears in A has no dependences upon
any element not in A.
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Proof." Let A have an element i. Assume that i is dependent upon an element j in node B.
Then, by the construction of the interface dependence graph, there will be an edge from A

to B, i.e., B is a child of A. But this violates the assumption that the only child of A is (DE]

Proposition 4 Nodes With Children. At least one package element which appears in a

node with a non-O child is a dependent element.
Proof: This is the converse of the previous Proposition. Let node A have elements i..... k.

Assume that no element in i..... k is dependent. Then, by the construction of the interface

dependence graph, the only child of A is _. But this violates the assumption that A has a
non-_ child. []

Another observation which can be made from Figure 19 is that certain pairs of nodes have

a non-_ greatest lower bound (e.g., the g.l.b, of nodes {Set, Copy} and {Set, IsEmpty} is
{Set}) while for others the g.l.b, is _ (e.g., the nodes {Set, Copy} and {SetIter, More}. This

corresponds to the fact that the Ada code for the slices (Set, Copy) and (Set, IsEmpty)

have package elements in common, while the code for the slices (Set, Copy) and (SetIter,

More) is disjoint. Recall, however, that the unique g.l.b, for a pair of nodes is not

necessarily the same as the set of common lower bounds for the pair of nodes. For
example, consider the two nodes {ElementType, Set, IsMernber} and {ElementType, Set,

Intersect}. These two nodes have a g.l.b, of _, but they are clearly not disjoint, having

ElementType and Set in common. This is reflected by the fact that the two nodes have a

non-empty set of common maximal lower bounds, namely (ElementType, Set}; by defini-

tion, this set is a cochain. This leads to the following:

Definition 6 Mutual Independence. Two nodes which have a non-empty set of common
maximal lower bounds are mutually dependent. Two nodes which have O as their set of

common maximal lower bounds are mutually independent.

These definitionsare distinctfrom the definitions of strict independence and strict

dependence given previously. These definitionscan be directlyextended from pairsto sets
ofmutually dependent and independentnodes; they willbe used below forfurther results

derived from the latticearrangement.

4.4 Generating All Possible Interface Slices

We turn now to- a_conm/'demtionof all_=ible in_ace sli'cesof a module. _e itturns
out that actuallygenerating allpossibleinterfaceslicesisimpractical for a production

development environment, as willbe shown below, itis instructiveto consider the process.

ARer a discussion of a _que for generating all_sible interfaceslices,a process

which isvery expensive in time and space requirements, we willdescribe a technique for

generating any desired interfaceslicein lineartime.

Proix{sition 5 Interface-S--_ _ a Finite Set. Given a set S of program elements of a

module, the set of interface slices of that module is finite. The set of interface slices is a

subset of a finite set which can be generated, :: ::
Proof." Every in-terface slice of the module is some combination of the finite members of S.

Therefore the set of interface slices of the module is finite. The lattice {2s,c_} con_

all possible combinations of the members of S. Therefore the set of interface slices is a

subset of the nodes in the lattice, and the lattice contains all interface slices. Since the
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lattice {2s,c,n} can be generated by a combinatorial brute-force algorithm, it is possible to

generate all possible interface slices of the module. []

4.4.1 A Generation Technique

Unlike Weiser slicing in which it is undecidable to generate all possible slices, and unlike

Gallagher and Lyle's decomposition slices which vary depending on the slicing technique

employed in their construction, this proposition guarantees that it is possible to generate

all possible interface slices. Unfortunately, the proposition does not indicate a method for

recognizing which of the lattice elements are in fact interface slices, and so does not

provide a useful generation algorithm. In addition, the proposition indicates a process

which is combinatorial in the number of program elements in the module.

All the information necessary to specifically generate just the interface slices is contained

in the interface dependence graph as discussed in Section 3. The graph for SetPkgTem-

p/ate is shown in Figure 10 (Page 18). Recall that an interface slice can be found by

taking the transitive closure of the slicing criterion which is a set of visible package ele-

ments in the interface dependence graph. It is obvious that generating all possible

interface slices can be accomplished simply by taking the transitive closure of all combina-

tions of visible package elements. Recall that taking the transitive closure of the desired

combination of package elements was how we generated the interface slices in Section 3.

Unfortunately, however, using this brute-force technique to generate all possible interface

slices requires time which is combinatorial in the number of visible elements. Even by

taking advantage of all the information in the lattice structure, it is not possible to

generate these slices in time less than combinatorial in the number of singleton interface
slices.

In fact,in the worst case thismethod based on latticeconstruction degrades to the time

requirement of the brute-forceapproach, even though thisisimprobable in practice. In

the worst case, forn visiblepackage elements, there are 2n interfaceslices.For thisto

occur,however, each element in the package would have to be strictlyindependent ofall

others. But the whole philosophy of package modularization is to group program elements

which are related,and which thus tend strongly to have dependences among them. The

more dependences within the set of package elements, the fewer distinctinterfaceslices

there are,and the betterthe time requirements of generating allpossibleinterfaceslices.

While the combinatorial time reqttired to actually generate all possible interface slices

makes the process impractical in a production system, the fact that it is possible to

generate all possible interface slices of a package allows us to use the process to aid in

determining relationships among the slices and the original package.

The key to generating these interfaceslicesisto consider the poset of Figure 19 (plus the

empty set added to the bottom) as the _truncated_ lower portion of the latticeof all

interface slices. We have already shown that the set of interface slices must form a

lattice. The task at hand is to generate the _missing" upper portion of the lattice. More

precisely, the poset of Figure 19 is a subset of the complete lattice which we desire to

construct, or at least to visualize. Again, in a production system we would expect an

efficient bit-vector representation to be used. We have used the explicit lattice represen-
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tation to aid in the visualization of the process and its results. Before presenting the

process, a statement about the union of interface slices is necessary.

Proposition 6 Union of Interface Slices. Let M be a module, C 1 = (e 1, e2,..., @ and C 2 =

<fl, f2,'"fk) be two interface slice criteria, and S 1 = M(C_) and S 2 = M(C2), be the two

respective interface slices. Also let C U = C 1 U C 2 be the union of the two criteria. Then

S 1 U S 2 = M(Cu).
Proof" By definition,

81 U S 2 = _I(Cp U M(C 2)
S 1 U S 2 _I(e 1) U M(e 2) U ... U M(e?)U (M(W1) U M(f 2) U ... U M(fk))

Because of the commutativity of set union, we have

S 1 U S 2 = M(e 1) U M(e 2) U ... U M(e2 U M(f 1) U M(f 2) U ... U M(f k)

S 1 U S 2 = M(C v)
[]

In words, Proposition 6 states that the union of two interface slices based on two slicing
criteria is identical to the interface slice based on the union of the two slicing criteria.

The proof states that the interface slice based on C_ is defined as the union of the

transitive closure of each of the individual elements e i. Since union is commutative, the
order in which the transitive closure of each element and its subsequent union into the

interface slice is inconsequential, and similarly for the elements f/for the slice based on

C2. Because of the nature of interface slice construction, therefore, the two expressions S t

U S 2 and M(C v) are computationa!ly equivalent, and thus are identical.

To generate all interface slices, one can use an iterative process which continues until no

more slices are generated. The first iteration consists of a pairwise union of every set

originally produced by the transitive closure of the singleton visible package elements, the

result of each union compared with all existing sets to eliminate duplicate sets. Each

subsequent iteration consists of performing a pairwise union of all sets produced in the

previous iteration with the original sets, again comp_g the results to the existing sets

to eliminate duplicates. The new sets which are not duplicates are the product of the

current iteration. Each iteration produces a new set of sets, each of which is inserted into

the growing lattice of interface slices. This insertion can use any appropriate lattice
construction algorithm, such as the one of the previous section. The result of this process

is a lattice, the least element of which is the empty set which corresponds to the empty

slicing criterion (), and the greatest element of which is the set of every package

element, which corresponds to the slicing criterion which lists every visible package

element, or equivalently, to the unsliced original package. Between these two nodes is

every possible interface slice.

4.4.2 An Examvle Lattice Comuletion

To illustrate the process of generating all interface slices, we shall use a contrived
example which is considerably smaller than SetPkgTemplate, which in the very first

iteration of the process grows to a size impossible to show in a figure. We shall return to

SetPkgTemplate in the next section.

Consider the peset shown in Figure 20(a), in which the lowercase letters stand for

program elements. (Again in this figure, all the directed edges point down.) The poset

contains 5 sets; the least element of the empty set has been added to the diagram. The
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pairwise union of these 5 sets results in the generation of 7 new sets which are shown

with the original 5 in Figure 20(b). The pairwise union of the 7 new sets with the original
5 produces 2 additional sets, as shown in the lattice of Figure 20(c). The pairwise union

of these last 2 with the original 5 produces no new sets, and so the iteration process ends.
w

= :

abcde

de ae co ac

• & c

e

abcde

acde abce

ade cde ace abc

de ae ce _c

• a c

Q

(a) (b) (c)

m

= -

Figure 20 Phases of construction of lattice of interface slices

This process can of course be applied to the poset of SetPkgTemplate which is shown in

Figure 19, but the results are too large to be displayed here, and dramatically illustrate

the impracticality of this generation technique in a real system. The process requires only

14 iterations (compared to the upper bound of 18) and produces 32,407 sets, i.e., the
package has 32,407 different interface slices. Thus, even though this number is much

smaller than the upper bound of 524_287, it is obvious that generating and storing all
possible slices for all packages is an impractical operation for a production development
environment.

4.4.3 Counting the Interface Slices

Even though generating and storing all the interface slices of a module may be impracti-

cal, it is possible to count the number of interface slices without actually generating them.

A dependence between two program elements can be phrased as a restr/ct/on which

eliminates some combinations of program elements from being a valid interfaceslice.In a

module with no dependences, and thus no restrictionson valid combinations of program
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elements, every possible combination of program elements forms an interface slice. In
this case, the number of interface slices is simply 2 Isl, which forms an upper bound on

the number of interface slices of a module. (This number includes the original unsliced

module and the empty set.) Dependences among program elements in a module reduce
the actual number of interface slices from this upper bound.

A dependence can be phrased as: "program element d depends on program element e,"
with the meaning that in an interface slice, d cannot appear unless e also appears. This

situation is illustrated in Figure 20(a). This dependence, stated as a restriction, can take

the form: "restriction R 1 is a combination of elements including d but not including e," or

more compactly, R 1 := d ^ -,e. No combination of program elements which satisfies the
condition stated in the restriction is an interface slice. Let the set of combinations of

program elements which do satisfy R 1 be denoted by A r In this case, A 1 = {d, ad, bd, cd,

abd, acd, bcd, abcd}, and IAll = 8. Note that none of these combinations appear in
Figure 20. If this were the only restriction in the module, then the total number of

interface slices of the module would be 2 Isl - IAll.

In the example in Figure 20, there is a second restriction R 2 := b ^ --a ^ --c, corresponding

to which is A 2 = {b, ab, bc, bd, be, abd, abe, bcd, bce, bde, abde, bcde}. Since R 1 and R 2
are the only two restrictions for this module, the set of all interface slices is therefore _ -

A1 -Ag. According to the inclusion-exclusion principle of counting [18], the size of this set

is 2 Isr- IAll - IA2I + IA 1NA2I. The Venn diagram in Figure 21 illustrates this
number of interface slices. More generally, given module M, with n program elements,

and dependences among those elements expressed in the form of restrictions R I ... R n,

which correspond to excluded combinations of elements A 1 ... A n, the number of interface

slices is:

21sl_ IA,I + E: IA nAjI - ... + (-1)" lA,nA n...nA, I
i i_j i_j_...an

For this example, the v_lue of rids _ression is 25 - 8 - 12 + 3 = 15, which is exa_y the

numberofnodesslio : in  gure 20.

For the interface slices of SetPkgTemplate, the restrictions can be read directly from

Table 2 (Page 31). The second line of that table would produce the restriction _a combina-
tion which includes the element Equal (ElemType, ElemType) but does not include _e e!e,

meat ElemTyp¢," or, $4 ^ -_3. These restrictions denote sets of elemen-ts-w_ do: not

constitute interface slices, and which allow an expression of the actual number of

interface slices to be formulated. We must note, however, that evaluating the expression

thus formulated is in general a non-trivial task, and may in some cases be as compu-

tationally expensive as forming the interface slices directly, and then countiag them, as

described in the previous __0n.

425 Any Desired Interface Slice

The fact that there is a proof that every interface slice can be generated guarantees that
specific interface slices of interest can _]so be generated. Generating An possible slices iA
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unnecessary, as any particular interface
slice can be generated as needed. In

Section 3, we discussed a technique for

generating interface slices which was
linear in the number of source state-

ments. However, it is possible, after a

linear-time scan, and the computation of

some sets, to generate any desired inter-
face slice in time which is linear in the

number ofelements in the slicingcrite-

rion. Each sliceso generated can be

viewed in relationto any other using the

latticeas a structuringmechanism.

The result of Proposition 6 leads to a

less expensive technique for generating

interface slices than computing the
transitive closure of the elements in the

2 S

A_ n A 2

Figure 21 Restrictions on combinations of

program elements

slicingcriterion.The firststep of the technique isto generate and store the transitive

closures of allsingletonvisibleelements of the module. This isexactly the information

shown in Table 2 (Page 31). Once thisinformation is stored,allthat is required to

generate an interfacesliceisto form the union ofthe elements in the interfacecriterion

and theirrespectivetransitiveclosures as shown in the table. For example, in Section 3,

we generated the interfacesliceof SetPkgTemplate on (Create,Insert,Equal (Set,Set),

Set,ElemType) by taking the transitiveclosureof the set of elements in the slicing

criterion.Depending upon the transitiveclosure algorithm used, thisrequires time from

O(n 3)to O(ne). Proposition 6 assertsthat instead, we can generate the interfacesliceby

taking the union ofthe transitiveclosures of each of the elements in the slicingcriterion.

Ifthese have already been pre-computed for each visibleelement in the module, then the

union can be computed in time linearin the number of elements in the slicingcriterion.

In Section 3, the transitiveclosure method generated the interfaceslice {Set,ElemType,

Create, Insert,Equal (Set,Set),NoMore, Setlter,IsMember, MakeSetlter, More, Next}, and

by consulting Table 2,itisclearthat thisisexactly the interfaceslicegenerated by the

union method as well.

In Section 3, we discussed two specific slices of interest of SetPkgTemplate. The mecha-

nisms are now in place to insert these two slices into the lattice and examine their import
and relationships. Figure 22 shows the lattice with these two slices in place. (In the

figure, ET is sometimes used for EtemType, to save space.)

4.6 Modifications in Inte_ Slices

Now that there is a process to generate interface slices of interest and a process to

arrange them in a lattice based on subset inclusion, what conclusions can be drawn about

the interfaceslicesso generated and arranged? What information can be gleaned from

this arrangement? Of what use is this representation? Some answers to these questions

appear in this section, some are more properly discussed in the context of specific applica-
tions and so are deferred to a future report, and some will no doubt become apparent

during the course of further development of the theory and technology of interface slicing.
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ET,Set,SetIter,NoMore

Equal(Set,Set),More,Next

IsMember,MakeSetIter

Create,lnsert

ElemType,Set, Intersect

Create,Inmert,SIze

ET, Set, SetIter, NoMore Set

Equal (S, S), More, Next Create

ImMember, MakeSetIter

nlon

8etIter \ ET, Set_

Molre Set, Set Ire r _sMember ,

..k...re=oMor. 'N'xt

l/
SetIter NoMore Bet: ElemTMpe

O

ET, Set

Intersect

ElemType

EquaI(ET,ET)

Proposi_n 7 Modifications in Mutually Independent Slices. Given two mutually

independent interface slices S 1 and S 2 of medule M, a modification to S 1 which does not

add a reference to an element in S 2 has no effect on S 2.

Proof.- Since S 1 and S 2 are mutually independent, by definition they have _ as their only
common maximal lower bound. By the construction algorithm, this means that for s]]

elements x in S 1 and for -11 elements y in $2, y ¢_ iref(x). Therefore a modification in S 1

cannot affect an element in $2, provided the modification does not add a new reference in

S 1 to an element to S 2. []

result can be extended directly to sets of mutua_y independent slices, so that given a

set $1_2,...,S . of mutua_y independent interface slices, a modification to S 1 which does

not add a reference to any element in $2,...,S n has no effect on any of the $2,...,S n.

The converse of this result is that given a pair of mutual]y dependent interface slices S z

and S 2, a modification to Sz may have an effect on S 2, and thus call for an examination of
that effect. The arrangement of the _ices into a lattice allows the determination of

mutual dependence by inspecting the set of common lower bounds of the nodes in question.
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Appendix A: Ada Specification of SetPkgTemplate

1 with ListPkgTemplate;

2 generic

3 type ElemType is private;
4 with function Equal(el, e2: ElemType) return boolean;

5 package SetPkgTemplate is
6 type Set is private;

7 NoMore: exception;

8 type SetIter is private;
9 function Create

i0 return Set;

ii procedure Insert(s: in out Set;

12 e: in ElemType);

13 procedure Delete(s: in out Set;
14 e: in ElemType);

15 function Intersect(sl, s2: Set)

16 return Set;

17 function Union(sl, s2: Set)

18 return Set;

19 function Copy(s: Set)
20 return Set;

21 function Equal(sl, s2: Set)
22 return boolean;

23 function IsEmpty(s: Set)
24 return boolean;

25 function IsMember(s: Set;

26 e: ElemType)
27 return boolean;

28 function Size(s: Set)

29 return natural;

30 function MakeSetIter(s: Set)

31 return SetIter;

32 function More(iter: SetIter)

33 return boolean;

34 procedure Next(iter: in out SetIter;

35 e: out ElemType);

36 procedure Destroy(s: in out Set);

37 private

38 package ListPkg is new ListPkgTemplate(ElemType, Equal);

39 use ListPkg;

40 type Set is new List;

41 type SetIter is new List;

42 end SetPkgTemplate;

m

Appendix B: Ada Specification of ListPkgTemplate

1 generic

2 type ItemType is private;

3 with function Equal ( X,Y: in ItemType) return boolean;

4 package ListPkgTemplate is

5 type List is private;

6 type ListIter is private;

7 CircularList :exception;
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63

EmptyList :exception;
ItemNotPresent :exception;

NoMore :exception;

procedure Attach(
Listl: in out List;

List2: in List

);

function Attach(
Elementl: in ItemType;

Element2: in ItemType

) return List;

procedure Attach(
L: in out List;

Element: in ItemTyloe

);

procedure Attach(
Element: in

L: in

);
function Attach (

Listl: in

List2: in

) return List;
function Attach (

Element: in

L: in

) return List;
function Attach (

L: in

Element: in

) return List;

function Copy(
L: in List

) return List;

ItemType;
out LiSt

List;
List

ItemTYpe;
List

List;

ItemType

generic
with function Copy(I: in ItemType) return ItemType;

function CopyDeep(
L: in List

) return List;
function Create

return List; :_,_

procedure DeleteHead(
L: in out List

);
procedure DeleteItem(

L: in out List;
Element: in ItemType

);
procedure DeleteItems(

L: in out List;

Element: in ItemType

);
procedure Destroy(

L: in out List

);
function FirstValue(
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L: in List

) return ItemType;
function IsEmpty(

L: in List

) return boolean;

function IsInList(
L: in

Element: in

) return boolean;
function LastValue(

L: in List

) return ItemType;

function Length(
L: in List

) return integer;
function MakeListIter(

L: in List

) return ListIter;
function More(

L: in ListIter

) return boolean;

procedure Next(
Place: in out ListIter;

Info: out ItemType

);
procedure ReplaceHead(

L: in out List;

Info: in ItemType

);
procedure ReplaceTail(

L: in out List;

NewTail: in List

);
function Tail(

L: in List

) return List;

function Equal(
Listl: in List;

List2: in List

) return boolean;

private

type Cell;
type List is access Cell;

type Cell is
record

Info: ItemType;
Next: List;

end record;

type ListIter is new List;
end ListPkgTemplate;

List;

ItemType
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